Quantitation 1000 Pesticide Residues in Tomato According to SANTE 11312/2021 Guideline

Laurent Pascaud
GC & GCMS product Specialist

Agenda

- Introduction
- Validation and Method Details
- Results
- Summary

Why Pesticide Analysis in Food Matrices?

- Pesticides are used as crop protection products to prevent, destroy, control harmful organisms or diseases during production, storage and transport
- Pesticide residues in or on food or feed have potential toxicity to humans and other species
- Global regulations require reporting of MRLs for various compounds in different food products

The Challenge of Pesticide Residues Analysis

Pesticide Diversity

Large numbers of analytes from multiple classes are analytically challenging, with more and more new pesticides introduced regularly

Matrix Complexity

Food is a complex matrix with many different commodity groups, adding to the challenge of method development

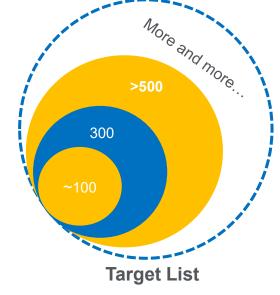
Low Limits of Detection

Difficult to identify and determine the targets with low concentration in complex matrices

Pesticide Diversity

11 classes of pesticides (based on target organisms)

- Insecticide kills insects
- Nematicide kills nematode worms
- Miticide kills mites
- Herbicide kills weeds
- Fungicide kills parasitic fungi
- Virucide kills phages outside the mycobacteria
- Rodenticide kills rodent
- Avicide kills birds
- Molluscicide kills mollusks
- Algaecide kills or prevents the growth of algae
- Bactericide kills bacteria


Governing Agency for Pesticides in Europe

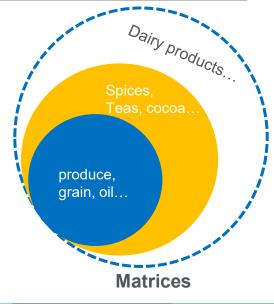
The number of new pesticides will keep growing due to the high demand of new pesticides to treat and prevent crops from pests damaging, which results in more and more pesticides are being added to the EU list for monitoring

purpose or establishing MRLs.

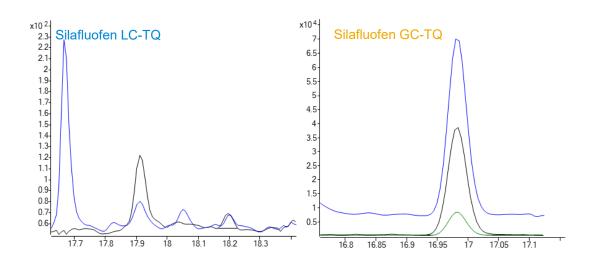
The coverage of the method is driven by the growing target list!

Matrix Complexity

SANTE/11312/2021: Analytical Quality Control and Method Validation Procedures for Pesticide Residues

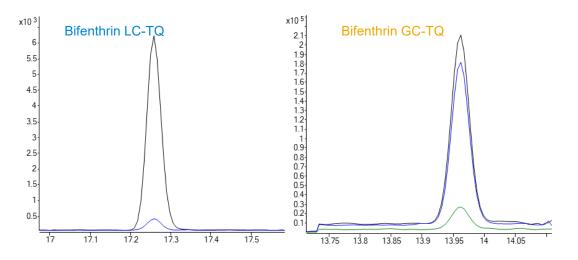

Analysis in Food and Feed

Annex A. Commodity groups and representative commodities? Vegetable and fruits, cereals and food of animal origin


Commodity groups	Typical commodity categories wthin the group	Typical representative commodities within the category
1. High water	Pome fruit	Apples, pears
content	Stone fruit	Apricots, cherries, peaches,
	Other fruit	Bananas
	Alliums	Onions, leeks
	Fruiting vegetables/cucurbits	Tomatoes, peppers, cucumbers, melons
	Brassica vegetables	Cauliflowers, Brussels-sprouts, cabbages, broccoli
	Leafy vegetables and fresh herbs	Lettuce, spinach, basil
	Stem and stalk vegetables	Celery, asparagus
	Fresh legume vegetables	Fresh peas with pods, peas, mange tout, broad beans, runner beans, French beans
	Fresh Fungi	Champianons, chanterelles
	Root and tuber vegetables	Sugar beet, carrots, potatoes, sweet
	l moor and reger regerees	potatoes
2. High acid	Citrus fruit	Lemons, mandarins, tangerines, oranges
content and	Small fruit and berries	Strawberries, blueberries, raspberries, black
high water content ¹⁰		currants, red currants, white currants, grapes
High sugar and low water content ¹¹	Honey, dried fruit	Honey, raisins, dried apricots, dried plums, fruit jams
4a. High oil	Tree nuts	Walnuts, hazelnuts, chestnuts
content and	Oil seeds	Oilseed rape, sunflower, cotton-seed,
very low water		soybeans, peanuts, sesame etc.
content	Pastes of tree nuts and oil seeds	Peanut butter, tahina, hazelnut paste
4b. High oil content and intermediate water content	Oily fruits and products	Olives, avocados and pastes thereof
5. High starch and/or protein content and	Dry legume vegetables/pulses	Field beans, dried broad beans, dried haricot beans (yellow, white/navy, brown, speckled), lentils
low water and fat content	Cereal grain and products thereof	Wheat, rye, barley and oat grains; maize, rice wholemeal bread, white bread, crackers, breakfast cereals, pasta, flour.

Commodity groups	Typical commodity categories wthin the group	Typical representative commodities within the category
6. "Difficult or unique commodities" ¹²		Hops Cocoa beans and products thereof, coffee, tea Spices
7. Meat (muscle) and Seafood	Red muscle White muscle Offal Fish	Beef, pork, lamb, game, horse Chicken, duck, turkey Liver, kidney Cod, haddock, salmon, trout
8. Milk and milk products	Milk Cheese Dairy products	Cow, goat and buffalo milk Cow and goat cheese Yogurt, cream
9. Eggs 10. Fat from food of animal origin	Eggs Fat from meat Milk fat ¹³	Chicken, duck, quail and goose eggs Kidney fat, lard Butter

The difficulties in pesticide analysis (such as matrix effect and extraction efficacy) are driven by a growing number of complex matrices!



Advantages of using GC- and LC-TQ Detection

- Bad sensitivity and results with LC-TQ
- Good sensitivity and results with GC-TQ
- Using GC for analysis and quantification

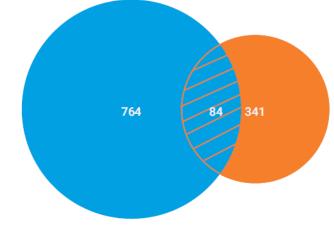
Bifenthrin 10 µg/kg

- Good sensitivity and results with LC-TQ
- Good sensitivity and results with GC-TQ
- Using LC for quantification and GC for verification or vice versa

What Would the Ideal Analysis Solution Look Like?

Comprehensive Method

An analytical method that covers all GC and LC amenable pesticides residues in a single method


Robust Workflow

A simple to use workflow that produces reliable results, regardless of matrices or target compounds

Powerful Instrument

High selectivity and sensitivity to meet MRLs requirement that is also robust and reproducible

Validation and Method Details

Verification Parameters and Criteria

SANTE/11312/2021: Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed

Annex A. Commodity groups and representative commodities? Vegetable and fruits, cereals and food of animal origin

Commodity groups	Typical commodity categories wthin the group	Typical representative commodities within the category
1. High water	Pome fruit	Apples, pears
content	Stone fruit	Apricots, cherries, peaches,
	Other fruit	Bananas
	Alliums	Onions, leeks
	Fruiting vegetables/cucurbits	Tomatoes, peppers, cucumbers, melons
	Brassica vegetables	Cauliflowers, Brussels-sprouts, cabbages, broccoli
	Leafy vegetables and fresh herbs	Lettuce, spinach, basil
	Stem and stalk vegetables	Celery, asparagus
	Fresh legume vegetables	Fresh peas with pods, peas, mange tout, broad beans, runner beans, French beans
	Fresh Funai	Champianons, chanterelles
	Root and tuber vegetables	Sugar beet, carrots, potatoes, sweet potatoes
2. High acid	Citrus fruit	Lemons, mandarins, tangerines, oranges
content and high water content ¹⁰	Small fruit and berries	Strawberries, blueberries, raspberries, black currants, red currants, white currants, grapes
High sugar and low water content ¹¹	Honey, dried fruit	Honey, raisins, dried apricots, dried plums, fruit jams
4a. High oil	Tree nuts	Walnuts, hazelnuts, chestnuts
content and very low water	Oil seeds	Oilseed rape, sunflower, cotton-seed, sovbeans, peanuts, sesame etc.
content	Pastes of tree nuts and oil seeds	Peanut butter, tahina, hazelnut paste
4b. High oil content and intermediate water content	Oily fruits and products	Olives, avocados and pastes thereof
High starch and/or protein content and	Dry legume vegetables/pulses	Field beans, dried broad beans, dried haricot beans (yellow, white/navy, brown, speckled), lentils
low water and fat content	Cereal grain and products thereof	Wheat, rye, barley and oat grains; maize, rice wholemeal bread, white bread, crackers, breakfast cereals, pasta, flour.

Verification Parameters and Criteria

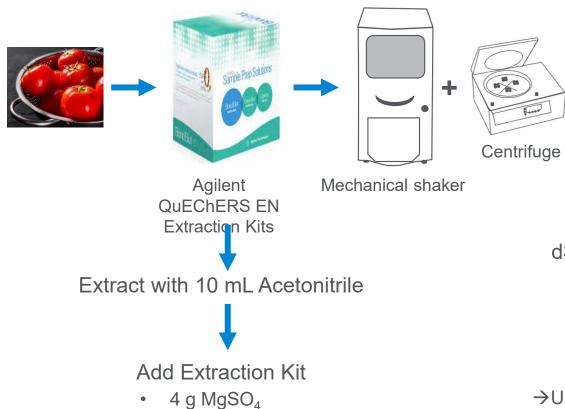
SANTE 11312/2021: Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in the Food and Feed

Parameter	What/how	Criterion	Cross reference to AQC document	
Sensitivity/linearity	Linearity check from five levels	Deviation of back-calculated concentration from true concentration ≤± 20 %	C14-C19	
Matrix effect	Difference of response from standard in matrix extract and standard in solvent	*	C21-C29 Glossary	
LOQ	Lowest spike level meeting the identification and method performance criteria for recovery and precision	≤MRL	G6	
Specificity	Response in reagent blank and blank control samples	≤ 30 % of RL	C41	
Recovery	Average recovery for each spike level tested	70-120 %	G3,G6	
Precision (RSD _r)	Repeatability RSDr for each spike level tested	≤ 20 %	G3, G6	
Precision (RSD _{wR})	Within-laboratory reproducibility, derived from on-going method validation / verification	≤ 20 %	G3, G6	
Robustness			G6, C39-C44	
Ion ratio	Check compliance with identification requirements for MS techniques	Table 3	Section D	
Retention time		± 0.1 min.	D2	

Linearity using matrix-matched calibration levels

Sensitivity (LOD & LOQ) using matrix-matched calibration levels and prespiked QCs

Mean Recovery using one level of prespiked QC (10 µg/kg)



Method Precision using Intra batch recovery analysis

Qualifier Ratio 2 Product Ions, Ratio ± 30 %

Sample Preparation

1 g NaCl

1 g Na₃Citrate 0.5 g Na₂HCitrate

dSPE clean-up of Raw Extract

Agilent

QuEChERS dSPE

Centrifuge

- 150 mg MgSO₄
- 50 mg C18
- 7.5 mg Carbon S (GCB)
- 50 mg PSA

→Universal dSPE kit, recommended for general pigmented fresh products

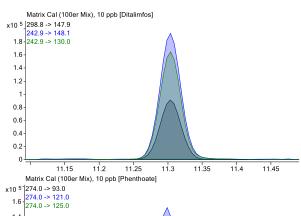
Examples for Clean-up Recovery

Matrix Cal 10 ppb

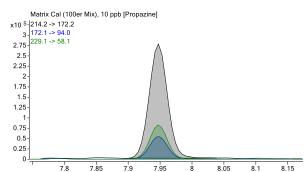
Tomato Sample 10 ppb with clean-up

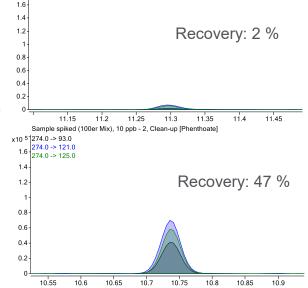
Sample spiked (100er Mix), 10 ppb - 2, Clean-up [Ditalimfos]

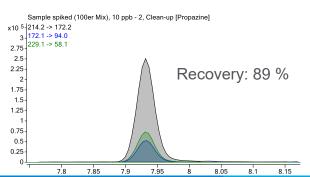
x10 5 298.8 -> 147.9

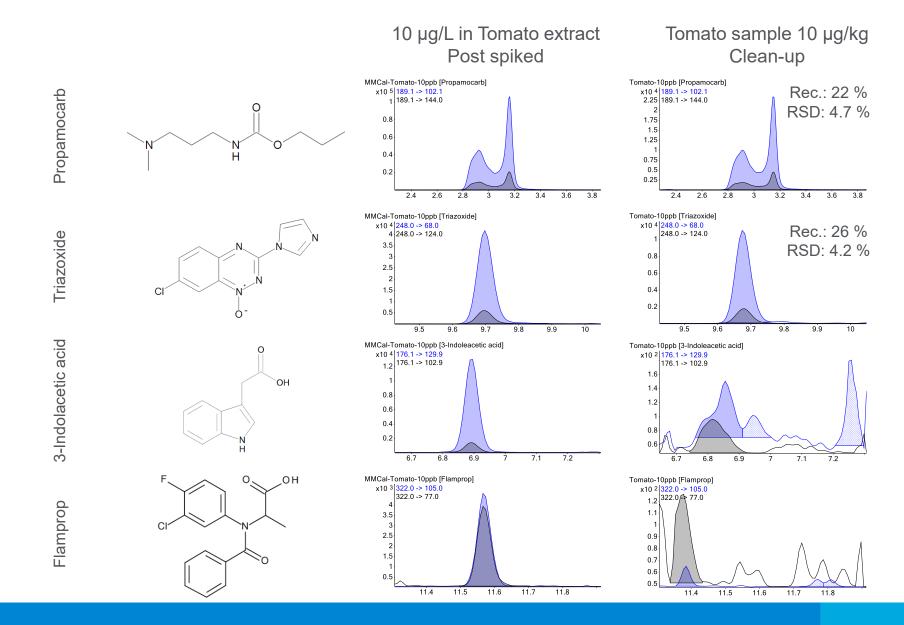

1.8 - 242.9 -> 130.0

242.9 -> 148.1

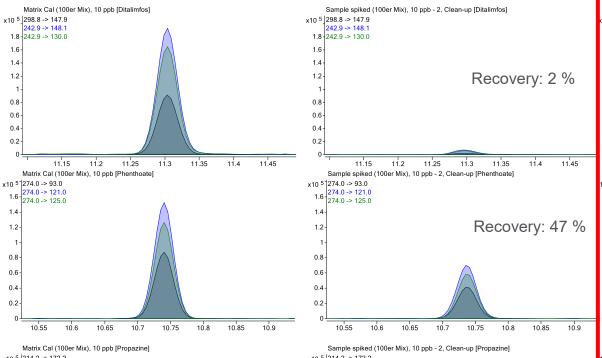

Ditalimfos

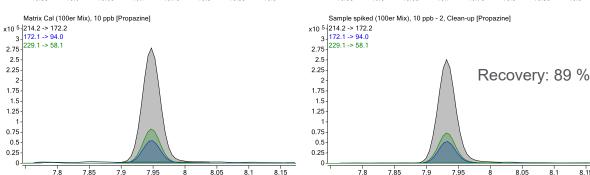

Phenthoate


Propazine

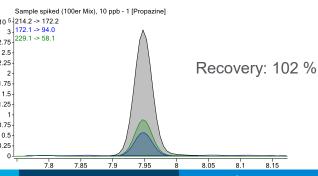


Comparison Raw Extract and Extract after Clean-up

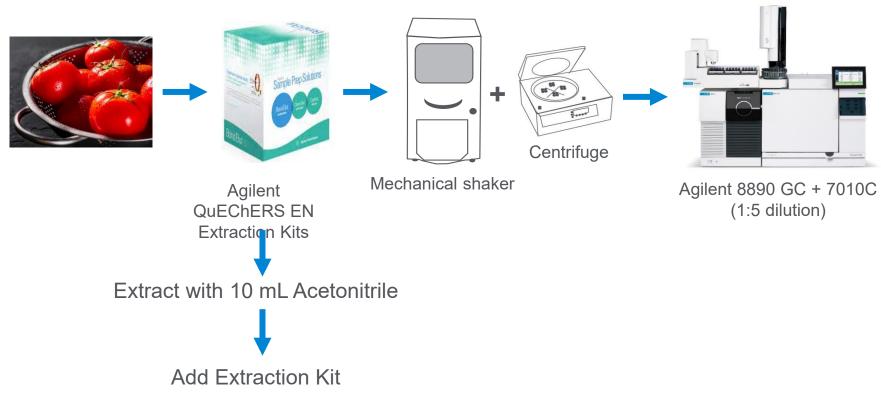

Examples for Clean-up Recovery


Ditalimfos

Phenthoate

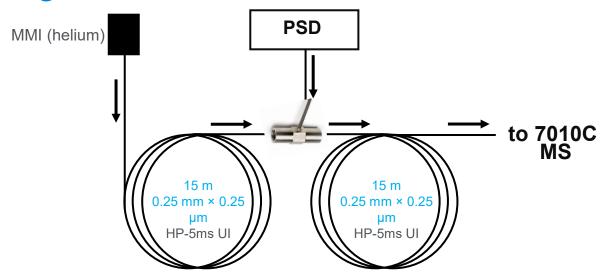

Propazine

Matrix Cal 10 ppb Tomato Sample 10 ppb w/ clean-up



Tomato Sample 10 ppb raw extract (w/o clean-up) Sample spiked (100er Mix), 10 ppb - 1 [Ditalimfos] (10 5 | 298.8 -> 147.9 242.9 -> 148.1 1.8 - 242.9 -> 130.0 Recovery: 102 % 11.15 11.2 11.25 11.3 11.35 11.45 Sample spiked (100er Mix), 10 ppb - 1 [Phenthoate] 10 5 274.0 -> 93.0 1.6 274.0 -> 121.0 274.0 -> 125.0 Recovery: 94 % 10.85 Sample spiked (100er Mix), 10 ppb - 1 [Propazine] 10 5-214.2 -> 172.2 3 172.1 -> 94.0 75 229.1 -> 58.1 Recovery: 102 %

Sample Preparation



Agilent 1290 Infinity II LC System

Agilent 6470 LC/TQ

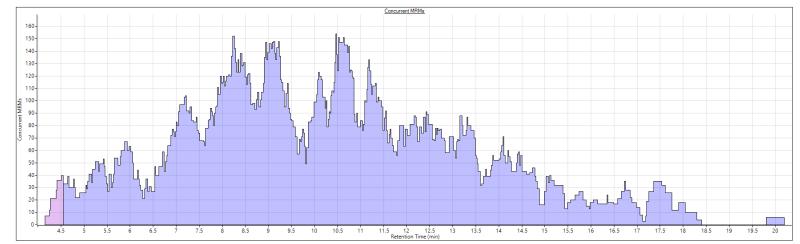
- 4 g MgSO₄
- 1 g NaCl
- 1 g Na₃Citrate
- 0.5 g Na₂HCitrate

Agilent 8890 GC – Method Details

PUU = Purge Ultimate union

Midcolumn backflush configuration

Parameter	
Column	HP-5ms Ultra Inert (15 m × 0.25 mm × 0.25 μ m), two columns coupled with PUU and backflush function
Injection Volume	1 μL
Injection Mode	Solvent Vent on MultiMode Inlet (MMI), dimpled liner
Inlet Temp. Program	60 °C (0.06 min), 720 °C/min to 280 °C
Column Flow	0.94 mL/min (column 1) and 1.14 mL/min (column 2)
Oven Gradient	60 °C (1 min), 40 °C/min to 170 °C, 10 °C/min to 310 °C (3 min)
Carrier Gas	Helium
Post Run	Backflush for 1.5 minutes


7010C TQ-MS Method Details

Parameter	
Ion Source	High Efficiency Source (HES)
Quad Temperature	150 °C
Source Temperature	280 °C
Mode	dMRM
Gain Factor	10
Resolution	Wide/Wide
Total MRMs	2.093
min/max Dwell Time	1.2 ms / 100.2 ms

Agilent 8890 GC with 7693A Automatic Liquid Sampler and 7010C Triple Quad

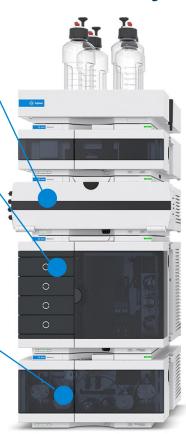
Overview of monitored MRMs over retention time:

6470B Triple Quadrupole LC/MS: A deeper look

1290 Infinity II

- 6470 (A or B) Triple Quadrupole LC/MS
- 1290 Infinity II LC System

MCT


Fast chromatography and day-to-day reproducibility

Multisampler

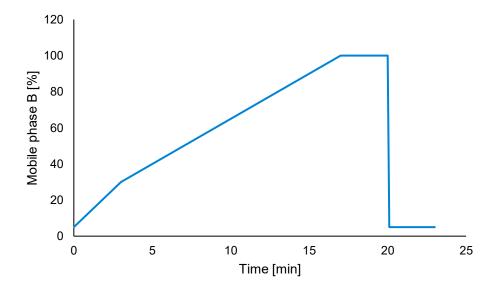
High sample capacity, precise injection, reduced carryover, best for complex matrices

High speed Binary Pump

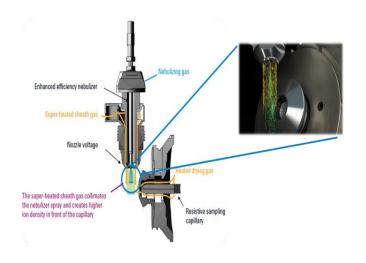
Ideal UHPLC front-end for LC/MS applications

6470B LC/TQ

Robust, dMRM acquisition for reliable target detection at low levels in complex matrices, offers uninterrupted lab


Agilent 1290 Infinity II LC- Method Details

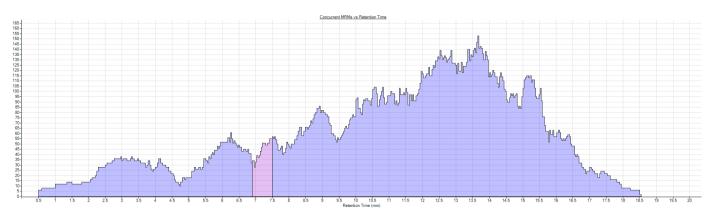
Agilent 1290 Infinity II UHPLC


Parameter	
Column	Zorbax Eclipse Plus C18, 2.1 x 150 mm; 1.8 μm
Temperature	40 °C
Injection volume	2 µL
Flow rate	0.4 mL/min
Mobile phase A	5 mM Ammonium Formate in Water with 0.1 % Formic acid
Mobile phase B	5 mM Ammonium Formate in Methanol with 0.1 % Formic acid

Time [min]	Mobile Phase B [%]
0	5
3	30
17	100
20	100
Post Time	3 min

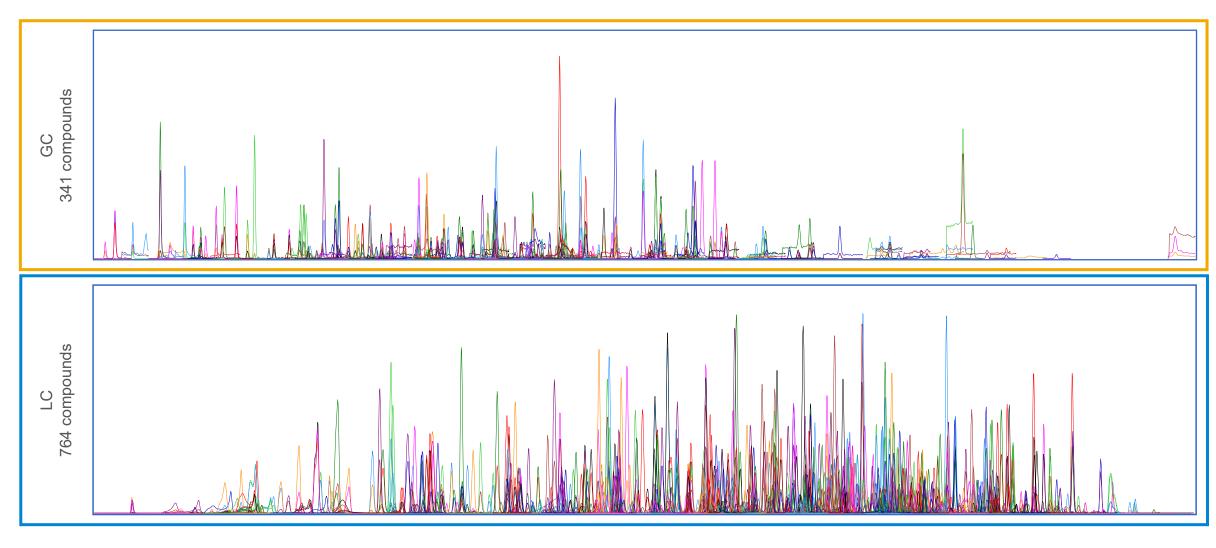
6470B TQ-MS Method Details

Parameter	
Ionization mode	Positive / Negative ESI with AJS
Scan type	dMRM
Gas temperature	200 °C
Gas flow	9 L/min
Nebulizer	35 psi
Sheath gas temperature	400 °C
Sheath gas flow	12 L/min
Capillary voltage	2500 V (+) / 3000 V (-)
Nozzle voltage	0 V
MS1 / MS2 resolution	Unit / Wide



Dynamic MRM Mode – Improved Data Quality in complex Analysis

	Compound Group	Compound Name 🛆	ISTD?	Precursor Ion ∇	MS1 Res	Product Ion ▽	MS2 Res	Ret Time (min)	Delta Ret Time	Fragmentor	Collision Energy	Cell Accelerator Voltage	Polarity
	AccuSTD S-96086-0	1-(4-Chlorophenyl)ur		171	Unit	128.1	Wide	7.21	0.6	105	15	2	Positive
	AccuSTD S-96086-0	1-(4-Chlorophenyl)ur		171	Unit	93.2	Wide	7.21	0.6	105	24	2	Positive
	LGC 1	1,2,4-dichloropheny		257	Unit	136	Wide	6.15	0.6	120	39	2	Positive
	LGC 1	1,2,4-dichloropheny		257	Unit	125	Wide	6.15	0.6	120	35	2	Positive
	AccuSTD S-96086-0	1,2-Benzisothiazol-3		152	Unit	134	Wide	6.1	1.4	140	20	3	Positive
	AccuSTD S-96086-0	1,2-Benzisothiazol-3		152	Unit	109	Wide	6.1	1.4	140	20	3	Positive
	CUS-635	1-Naphthylacetamid		186.09	Unit	141	Wide	8.21	0.6	120	17	3	Positive
	CUS-635	1-Naphthylacetamid		186.09	Unit	115	Wide	8.21	0.6	120	45	4	Positive
	Agilent-Mix #6	2,3,5-Trimethacarb		194.1	Unit	137	Wide	10.63	0.6	90	9	4	Positive
١	Agilent-Mix #6	2,3,5-Trimethacarb		194.1	Unit	122.1	Wide	10.63	0.6	90	28	4	Positive
	CUS-638	2,4,5-TP		266.9	Wide	194.9	Wide	12.69	0.6	150	16	1	Negative
	CUS-638	2,4,5-TP		266.9	Wide	158.9	Wide	12.69	0.6	150	32	1	Negative
	AccuSTD S-96086-0	2,4-Dimethylaniline		122	Unit	107	Wide	4.6	1	120	18	3	Positive
	AccuSTD S-96086-0	2,4-Dimethylaniline		122	Unit	77	Wide	4.6	1	120	34	3	Positive
	LGC 1	2-Hydroxypropoxyca		415.1	Unit	174.2	Wide	6.02	0.6	120	17	4	Positive
	1001	2 Hudramprapama-		A1E 1	Healt	110	Vi6do	600	ne	120	25	4	Docition


The number of MRM transitions is adjusted dynamically during LC run resulting in shorter MS scan cycle times and excellent quantification of very narrow peaks

Total 1590 MRM

Benefits include:

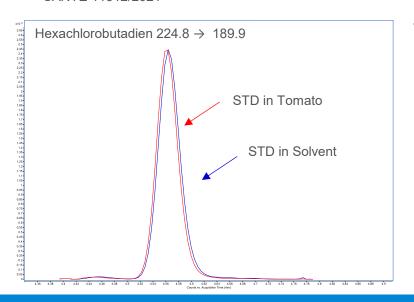
- Manage many MRMs efficiently and maximize MRM collection time at relevant elution times
- Flexible to add more MRMs with uncompromised quality of data
- Enable to perform sensitive detection of hundreds of targets simultaneously

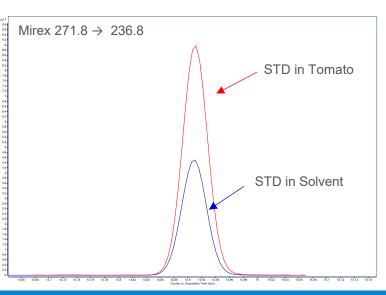
Optimized Methodology Leads to Higher Throughput

Sharp, symmetric peaks demonstrate the efficient chromatographic separation within 20 minutes runtimes

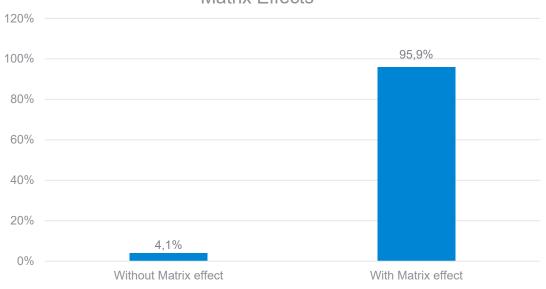
23

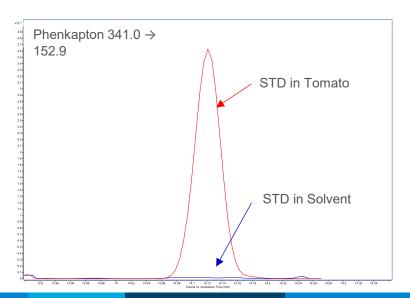
Validation and Method Details



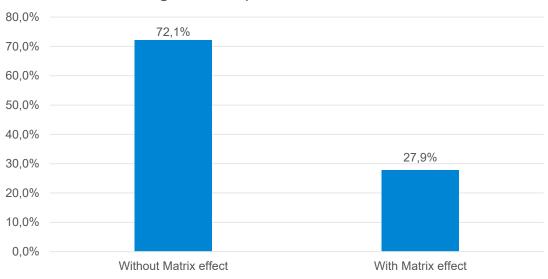

Matrix Effect (ME) Evaluation

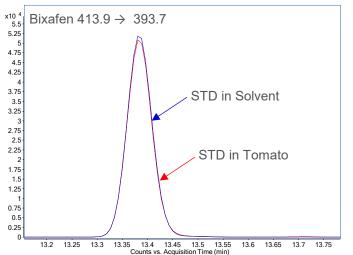
 $ME = \frac{Target\ Response\ in\ matrix}{Target\ Response\ in\ Solvent} x 100\%$

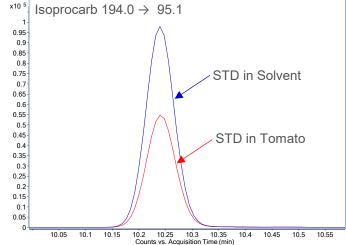

ME % Range*	Ion suppression
80 - 120%	No significant ME
<80%	Significant ion-suppression
>120%	Significant enhancement

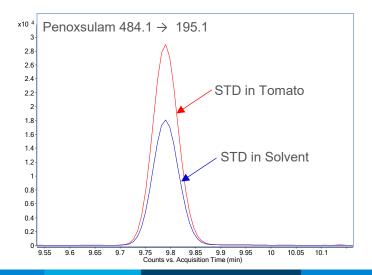

^{*} SANTE 11312/2021

Percentage of Compounds with and w/o Matrix Effects

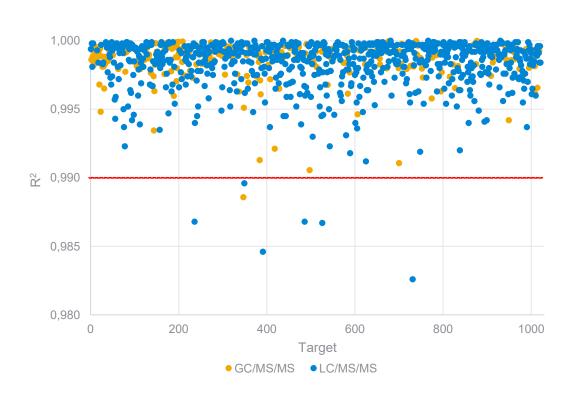

Matrix Effect Evaluation

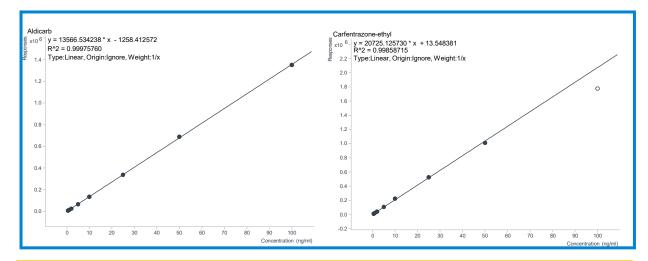

$$ME = \frac{Target\ Response\ in\ matrix}{Target\ Response\ in\ Solvent} x 100\%$$

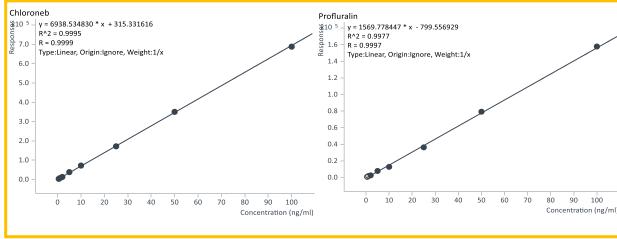

ME % Range*	Ion suppression
80 - 120%	No significant ME
<80%	Significant ion-suppression
>120%	Significant enhancement


^{*} SANTE/11312/2021

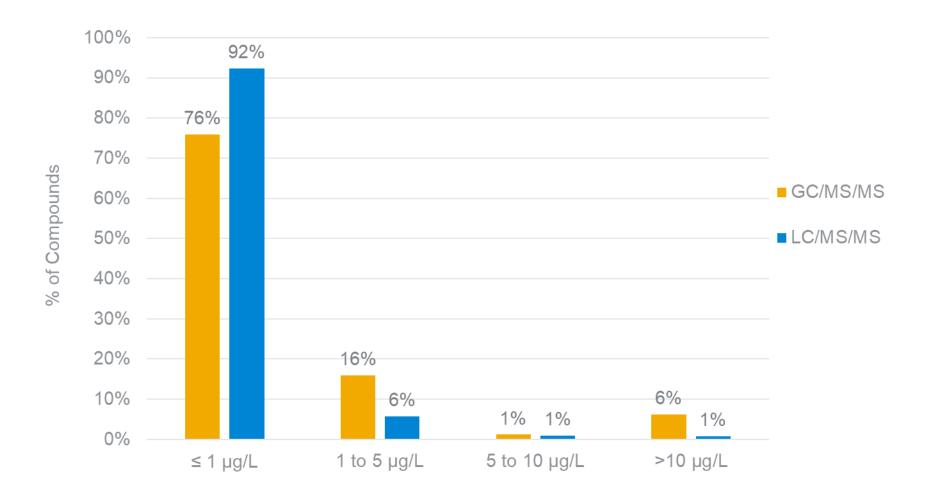
Percentage of Compounds with/without Matrix effects



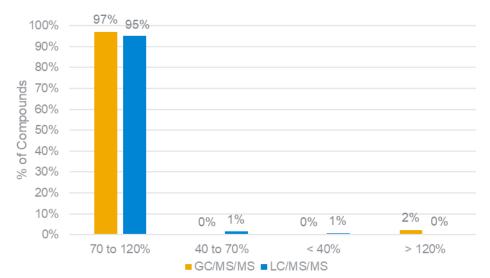



Linearity

Calibration range: 0.5 – 100 µg/L with 8 calibration levels



99 % of compounds demonstrated $R^2 \ge 0.99$



Sensitivity

Method Limits of Quantification – Meeting Regulatory Requirements

Matrix	Criteria for Limits of Quantification	Number of compounds meeting Criteria
Tomato	 S/N ≥ 10 Qualifier ratios variation ≤ 30% R² ≥ 0.99 Recovery within 70% - 120% RSD ≤ 20% 	10 μg/kg: 959 (94%)

Conclusions



Wide Coverage

- 1021 targets in dMRM
- Only sample prep
- 20 minutes run time

rull /erification

- Verified based SANTE
- Linearity, Matrix effects, RSD, Recover

Quantitation of Over 1,000 Pesticide Residues in Tomato According to SANTE 11312/2021 Guideline

Using LC/MS/MS and GC/MS/MS detection

Authors

Peter Kornas and Teresa Klink Agilent Technologies, Inc.

Abstract

A comprehensive multiresidue workflow was developed and validated for the simultaneous quantitation of over 1,000 pesticide residues in tomato to accelerate and simplify routine laboratory food testing. The workflow analyzes a wide range of pesticide residues simultaneously in 20 minutes and uses a single sample preparation method for both LC/MS/MS and GC/MS/MS analyses, leading to increased turnaround time, simplified analysis, and lower laboratory costs.

The workflow includes sample preparation, chromatographic separation, mass spectrometric (MS) detection, data analysis, and data interpretation using Agilent LC/MS/MS and GC/MS/MS systems. For sample preparation, the Agilent QuEChERS extraction kit was used without further cleanup. Compound transitions and associated optimized parameters were developed based on the Agilent pesticide MRM databases for both LC/MS and GC/MS workflows.

Workflow performance was evaluated and verified according to the SANTE 11312/2021 guideline based on instrument limit of detection (LOD), calibration curve linearity, recovery, and precision using matrix-matched calibration standards from 0.5 to 100 μ g/L. Over 98% of analytes demonstrated linearity with R* 2 o.99. Method precision was assessed using recovery repeatability (RSD_), At the 10 μ g/kg level, RSD, values of 98% of compounds were within the limit of 20%. The mean recoveries of the six technical replicates were within the limits of 40 to 120% for 98% of target analytes.

5994-6895EN

Excellent Results

- Sensitivity: 97 % of compounds with LoD ≤ 10 µg/kg
- Linearity: More than 98 % of compounds with R2 ≥ 0.99
- Quality: ≥ 94 % of compounds fulfilled SANTE Quality criteria

Thank you!

